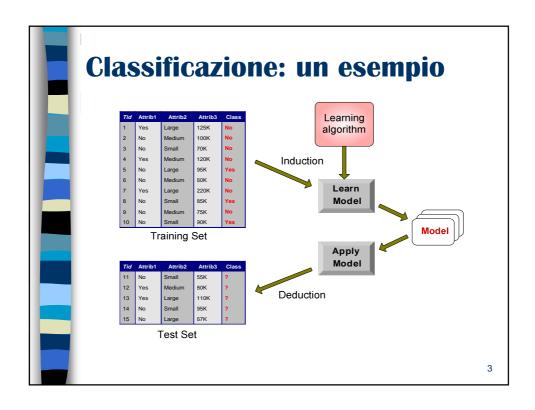
Classificazione I

Prof. Matteo Golfarelli

Alma Mater Studiorum - Università di Bologna

Classificazione: Definizione

- Data una collezione di record (training set)
 - Ogni record è composto da un insieme di attributi, di cui uno esprime la classe di appartenenza del record.
- Trova un modello per l'attributo di classe che esprima il valore dell'attributo in funzione dei valori degli altri attributi.
- Obiettivo: record <u>non noti</u> devono essere assegnati a una classe nel modo più accurato possibile
 - ✓ Viene utilizzato un test set per determinare l'accuratezza del modello. Normalmente, il data set fornito è suddiviso in training set e test set. Il primo è utilizzato per costruire il modello, il secondo per validarlo.
- I classificatori possono essere utilizzati sia a scopo descrittivo sia a scopo predittivo
- Sono più adatti ad attributi nominali (binari o discreti) poichè faticano a sfruttare le relazioni implicite presenti negli attributi ordinali, numerici o in presenza di gerarchie di concetti (es. scimmie e uomini sono primati)



Applicazioni Predire se una cellula tumorale è benigna o maligna in base alle sue caratteristiche Classificare se una transazione con carta di credito sia o meno fraudolenta Classificare le strutture proteiche secondarie in alphahelix, beta-sheet, or random coil Classificare le news in base all'argomento:finanza, meteo, sport, intrattenimento, ecc.

Tecniche di classificazione

- Alberi decisionali o Decision Tree
- Regole di decisione
- Nearest-neighbor
- Reti Bayesiane
- Reti neurali
- Support Vector Machines

5

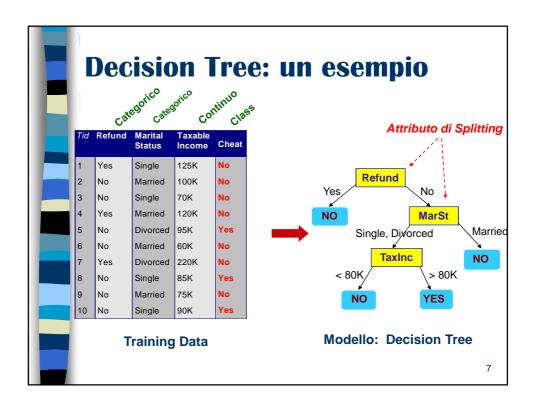
I Decision Tree

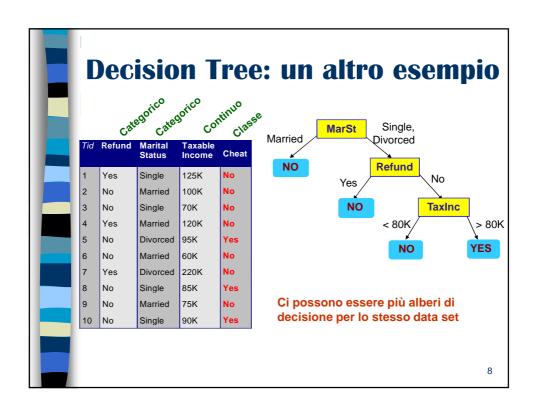
- È una delle tecniche di classificazione maggiormente utilizzate che permette di rappresentare con un albero un insieme di regole di classificazione.
- Struttura gerarchica che consiste di un insieme di nodi, correlati da archi (rami) orientati ed "etichettati". Si hanno due tipi di nodi:
 - Le classi sono definite nei nodi foglia mentre i rimanenti nodi sono etichettati in base all'attributo che partiziona i record. Il criterio di partizionamento rappresenta l'etichetta degli archi
- Ciascun percorso radice-foglia rappresenta una regola di classificazione

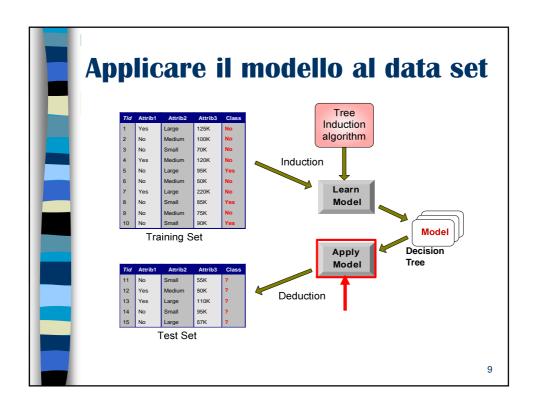
NO MarSt No Married

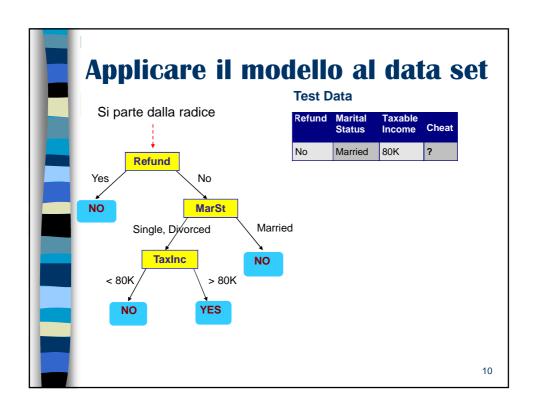
Single, Divorced Married

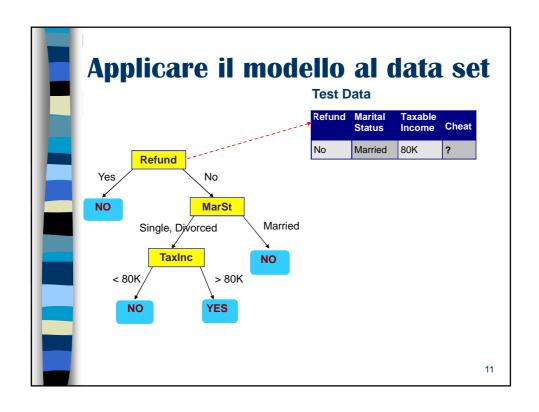
TaxInc NO YES 6

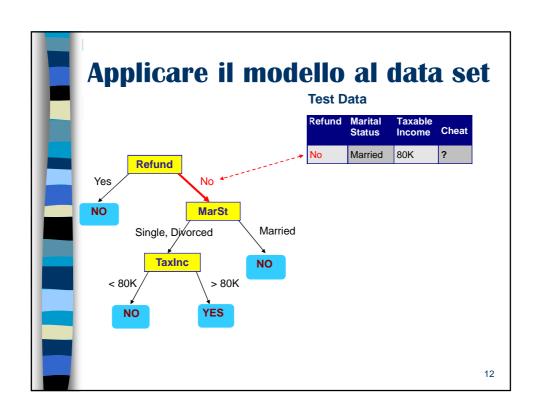


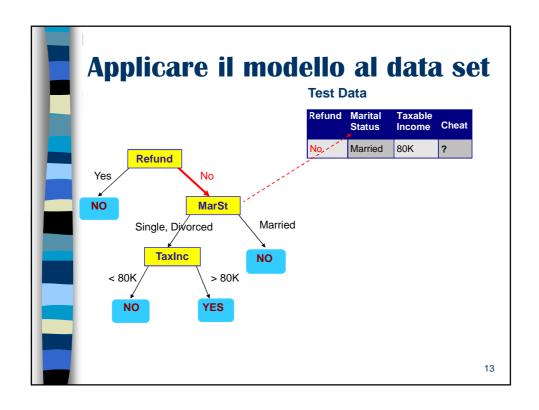


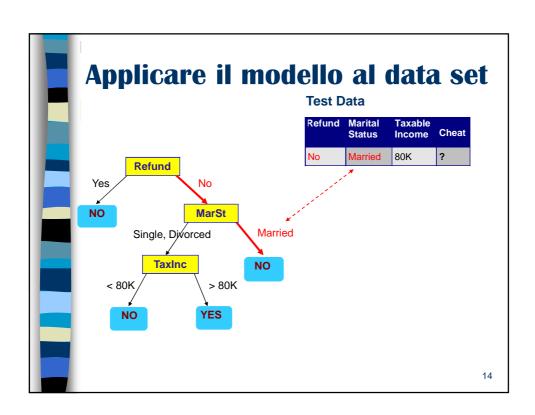


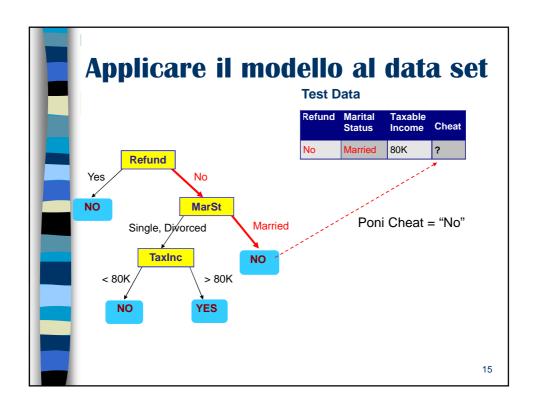


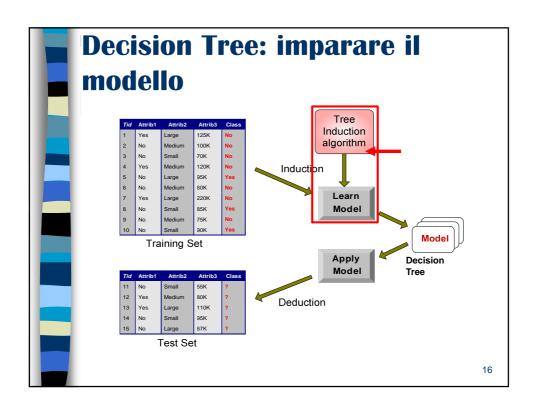












Induzione con Decision Tree

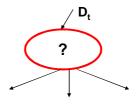
- Il numero di decision tree cresce esponenzialmente con il numero di attributi
- Gli algoritmi utilizzano generalmente tecniche greedy che fanno localmente la scelta "migliore"
- Sono a disposizione molti algoritmi:
 - ✓ Hunt's Algorithm
 - ✓ CART
 - ✓ ID3, C4.5
 - ✓ SLIQ,SPRINT
- Devono essere affrontati diversi problemi
 - ✓ Scelta del criterio di split
 - ✓ Scelta del criterio di stop
 - ✓ Underfitting
 - ✓ Overfitting
 - ✓ Frammentaizone dei dati
 - ✓ Criterio di ricerca
 - ✓ Espressività
 - ✓ Replicazione degli alberi

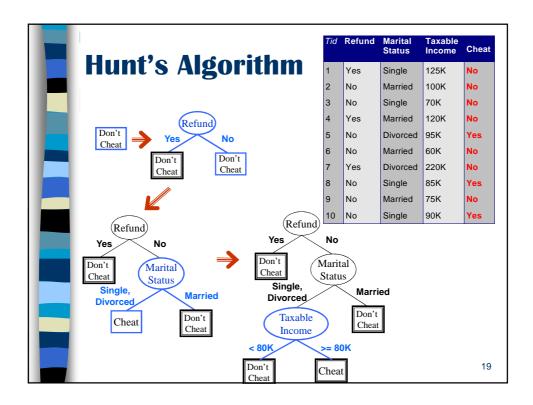
17

Hunt's Algorithm

- Approccio ricorsivo che suddivide progressivamente un insieme di record D_t in insiemi di record via via più puri
- Sia D_t l'insieme dei record del training set corrispondenti al nodo t e y_t={y₁,...,y_k} le possibili label di classe
- Procedura generale:
 - ✓ Se D_t contiene record appartenenti alla sola classe y_j, allora t è un nodo foglia con label v.
 - ✓ Se D_t è un insieme vuoto, allora t è un nodo foglia a cui è assegnata una classe del nodo padre
 - ✓ Se D_t contiene record appartenenti a più classi, si scelga un attributo e un criterio di split per partizionare i record in più sottoinsiemi.
 - Si riapplichi ricorsivamente la procedura generale ai sottoinsiemi

Tid	Refund	Marital Status	Taxable Income	Cheat
1	Yes	Single	125K	No
2	No	Married	100K	No
3	No	Single	70K	No
4	Yes	Married	120K	No
5	No	Divorced	95K	Yes
6	No	Married	60K	No
7	Yes	Divorced	220K	No
8	No	Single	85K	Yes
9	No	Married	75K	No
10	No	Single	90K	Yes





Pseudo-codice di massima // Let E be the training set and F the attributes result=PostPrune(TreeGrowth(E,F)); TreeGrowth(E,F)if StoppingCond(E,F)= TRUE then leaf=CreateNode(); leaf.label=Classify(E); return leaf; root = CreateNode(); root.test_cond = FindBestSplit(E,F); let $V = \{v \mid v \text{ is a possibile outcome of } root.test_cond\}$ $\quad \text{for each } v \ \in \ \mathbf{V} \ \mathbf{do}$ $E_v = \{e \mid root.test_cond (e) = v \text{ and } e \in E\}$ child = TreeGrowth(E_v,F); add child as descendants of root and label edge $(root \rightarrow child)$ as vend for end if return root; 20

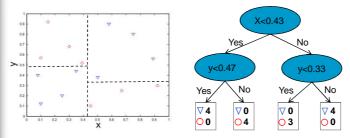
Alcune considerazioni...

- La ricerca di un albero di decisione ottimo è un problema NP-Completo, ma gli algoritmi eurisitci utilizzati sono molto efficienti
 - ✓ La maggior parte degli approcci eseguono una partizione ricorsiva top down basata su criteri greedy
- La classificazione utilizzando un albero decisionale è estremamente veloce e offre una facile interpretazione dei criteri
 - ✓ Il caso peggiore è O(w) dove w è la profondità dell'albero
- Gli alberi di decisione sono sufficientemente robusti rispetto alla presenza di attributi fortemente correlati
 - ✓ Uno dei due attributi non sarà considerato
 - ✓ E' anche possibile cercare di scartare uno degli attributi in fase di preprocessing mediante opportune tecniche di feature selection

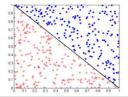
21

Alcune considerazioni...

- L'espressività degli alberi decisionali è limitata alla possibilità di effettuare partizionamenti dello spazio di ricerca con condizioni che coinvolgono un solo attributo per volta
 - ✓ Decision boundary paralleli agli assi



Questa suddivione non è ottenibile con alberi decisionali tradizionali



X-Y = 1

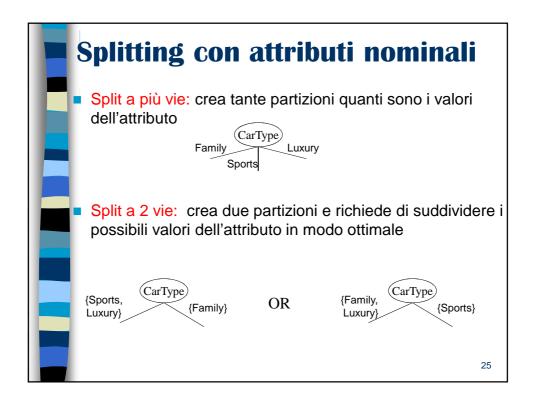
Elementi caratterizzanti

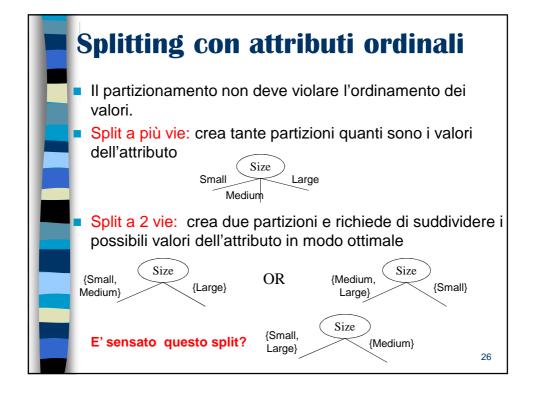
- A parte la logica di base per definire completamente un algoritmo per la costruzione di alberi decisionali è necesario definire:
 - ✓ La condizione di split
 - ✓ Il criterio che definisce lo split migliore
 - ✓ Il criterio per interrompere lo splitting
 - ✓ Le modalità per valutare la bontà di un albero decisionale

23

Come definire la condizione di split

- Dipende dal tipo di attributo
 - ✓ Nominale
 - ✓ Ordinale
 - ✓ Continuo
- Dipende dal numero di split applicabili ai valori dell'attributo
 - ✓ A 2 vie
 - ✓ A più vie





Splitting con attributi continui

- Split a più vie: la condizione di split può esere espressa come un test di comparazione che ha per risultato più range di valori. L'algoritmo deve considerare tutti i possibili range di valori come possibili punti di split
 - Split a 2 vie: la condizione di split può esere espressa come un test di comparazione con risultato binario. L'algoritmo deve considerare tutti i valori come possibili punti di split

(i) Binary split

(ii) Multi-way split

27

Splitting con attributi continui

- Per gestire la complessità della ricerca del/i punto/i di split ottimali può essere utilizzata una tecnica di discretizzazione
 - ✓ Statica si discretizza una sola volta prima di applicare l'algoritmo
 - ✓ Dinamica— si discretizza a ogni passo di ricorsione sfruttando le informazioni sulla distribuzione dei dati in input al nodo D_t.

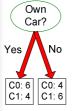
Elementi caratterizzanti

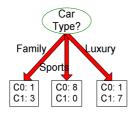
- A parte la logica di base per definire completamente un algoritmo per la costruzione di alberi decisionali è necesario definire:
 - ✓ La condizione di split
 - ✓ Il criterio che definisce lo split migliore
 - ✓ Il criterio per interrompere lo splitting
 - ✓ Le modalità per valutare la bontà di un albero decisionale

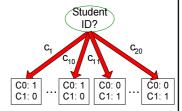
29

Come determinare lo split migliore

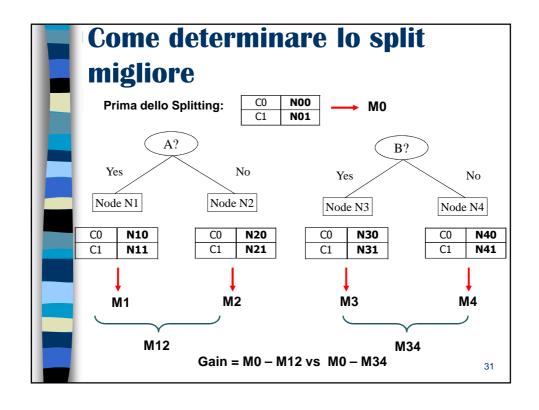
 Prima dello split una sola classe con 10 record in classe C0 e 10 record in classe C1







- Il criterio di split deve permettere di determinare classi più pure. Serve una misura di purezza
 - ✓ Gini index
 - ✓ Entropia
 - ✓ Misclassification error



Misure di impurità

- Dato un nodo p con record appartenenti a k classi e un suo partizionamento in n nodi figli
 - √ m = numero di record nel padre p
 - √ mi = numero di record nel figlio i

ATTENZIONE a non confondere il numero delle classi (k)

e quello dei nodi figli (n)

Gini index: usato in CART, SLIQ, SPRINT. GIVI (1) = $1 - \sum_{j=1}^{n}$

■ Entropia usato in ID3 e C4.5

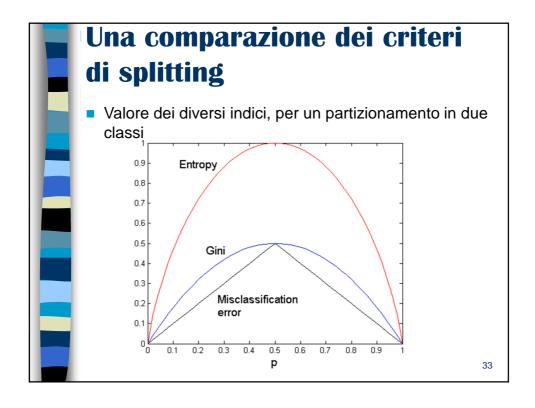
$$Entropy(i) = -\sum_{i=1}^{k} p(j|i) \log p(j|i)$$

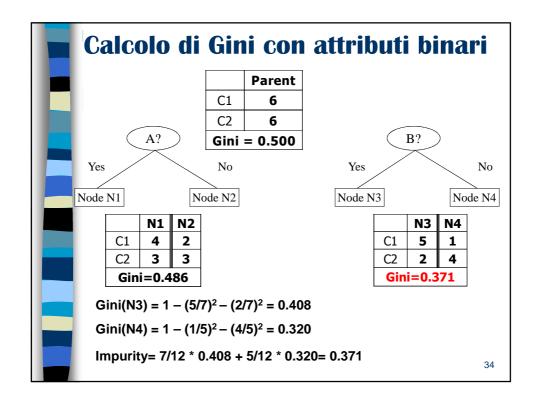
- Emropia acato in 120 c c in

$$Error(i) = 1 - \max_{j \in K} p(j \mid i)$$

- Errore di classificazione
- Impurità complessiva dello split è data dalla seguente formula dove meas() è una delle misure introdotte

$$Impurity_{split} = \sum_{i=1}^{n} \frac{m_i}{m} meas(i)$$





Calcolo di Gini con attributi categorici Solitamente è più efficiente creare una "count matrix" per ogni valore distinto dell'attributo di classificazione e quindi effettuare i calcoli utilizzando tale matrice Split a più vie Split a 2 vie (find best partition of values) CarType CarType CarType {Sports, {Family} {Sports} {Family, Family Sports Luxury Luxury} Luxury) C1 C1 C1 C2 1 I C2 C2 Gini 0.400 Gini 0.419 Gini 0.393 35

Calcolo di Gini con attributi Continui Una soluzione più efficiente prevede di: Ordinare i record in base al valore dell'attributo Leggere i valori ordinati e aggiornare la count matrix, quindi calcolare l'indice di Gini Scegliere come split point il valore che minimizza l'indice Valori ordinati

Cheat	I	No		No	•	Ν	0	Ye	s	Υe	s	Ye	es	Z	0	N	lo	N	lo		No	
										Та	xabl	e In	com	е								
		60		70		7	5	85	5	90	0	9	5	10	00	12	20	12	25		220	
	5	5	6	5	7	2	8	0	8	7	9	2	9	7	11	10	12	22	17	72	23	30
_	<=	۸	"	>	\u00e4	۸	\ =	^	\=	^	"	^	\=	۸	"	^	"	>	=	۸	<=	>
Yes	0	3	0	3	0	3	0	3	1	2	2	1	3	0	3	0	3	0	3	0	3	o
No	0	7	1	6	2	5	3	4	3	4	3	4	3	4	4	3	5	2	6	1	7	0
Gini	0.4	20	0.4	100	0.3	75	0.3	343	0.4	117	0.4	100	<u>0.3</u>	<u>300</u>	0.3	43	0.3	75	0.4	100	0.4	120

Sono possibili ulteriori ottimizzazioni?

Split basato sul GAIN

- Utilizzando misure di impurità delle classi come Gini e Entropy richiede di scegliere il valore di split che massimizza il "guadagno" in termini di riduzione dell'impurità delle classi dopo lo split
- Per esempio, considerando l'entropia, il guadagno del partizionamento di un nodo p in n nodi figli è:

$$GAIN_{split} = Entropy(p) - \left(\sum_{i=1}^{n} \frac{m_i}{m} Entropy(i)\right)$$

- Selezionare il valore di split che massimizza il GAIN tende a determinare criteri di split che generano un numero molto elevato di classi molto pure e con pochi record.
 - ✓ Partizionare gli studenti in base alla loro matricola garantisce che tutte le classi (formate da un solo studente) siano totalmente pure!!

- Per evitare il problema della polverizzazione delle classi è preferibile massimizzare il Gain Ratio:
 - ✓ n = numero di nodi figli
 - √ m = numero di record nel padre p
 - √ mi = numero di record nel figlio i

$$GainRATIO_{split} = \frac{GAIN_{Split}}{SplitINFO}$$

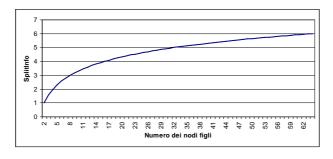
$$SplitINFO = -\sum_{i=1}^{n} \frac{m_i}{m} \log \frac{m_i}{m}$$

- ✓ Maggiore il numero dei figli, maggiore il valore di SplitInfo con una conseguente riduzione del GainRatio
- ✓ Per esempio, assumendo che ogni nodo figlio contenga lo stesso numero di record, SplitInfo = log n.
- ✓ C4.5 utilizza il criterio basato su SplitINFO

39

Split basato sulle INFO

- Per evitare il problema della polverizzazione delle classi è preferibile massimizzare il Gain Ratio:
 - ✓ n = da 2 a 64
 - $\sqrt{m} = 100$
 - ✓ mi = m/n



Esercizio

 Calcola gini index e information gain per il seguente problema binario e commenta i risultati

Α	В	Classe
Т	F	+
Т	Т	+
Т	Т	+
Т	F	-
Т	Т	+
F	F	-
F	F	-
F	F	-
Т	Т	-
Т	F	-

Elementi caratterizzanti

- A parte la logica di base per definire completamente un algoritmo per la costruzione di alberi decisionali è necesario definire:
 - ✓ La condizione di split
 - ✓ Il criterio che definisce lo split migliore
 - ✓ Il criterio per interrompere lo splitting
 - ✓ Le modalità per valutare la bontà di un albero decisionale

Crtiteri di stop per l'induzione di alberi decisionali

- Interrompere lo split di un nodo quando tutti i suoi record appartengono alla stessa classe
- Interrompere lo split di un nodo quando tutti i suoi record hanno valori similiari su tutti gli attributi
 - ✓ La classificazione sarebbe poco significativa e dipendente da piccole fluttuazioni dei valori
- Interrompere lo split quando il numero dei record nel nodo è inferiore a una certa soglia (data fragmentation)
 - ✓ Il criterio selezionato non sarebbe statisticamente rilevante

43

Metriche per la valutazione del modello

- La Confusion Matrix valuta la capacità di un classificatore sulla base dei seguenti indicatori
 - ✓ TP (true positive): record correttamente classificati come classe Yes
 - ✓ FN (false negative): record incorrettamente classificati come classe No
 - ✓ FP (false positive): record **in**correttamente classificati come classe Yes
 - ✓ TN (true negative) record correttamente classificati come classe No

	CI	Classe prevista				
		Class=Yes	Class=No			
Classe	Class=Yes	TP	FN			
effettiva	Class=No	FP	TN			

 Se la classificazione utilizza n classi, la matrice di confusione sarà di dimensione nxn

Accuratezza

	CI	Classe prevista				
		Class=Yes	Class=No			
Classe	Class=Yes	TP	FN			
effettiva	Class=No	FP	TN			

L'accuratezza è la metrica maggiormente utilizzata per sintetizzare l'informazione di una confusion matrix

$$Accuracy = \frac{TP + TN}{TP + TN + FP + FN}$$

 Equivalentemente potrebbe essere utilizzata la frequenza dell'errore

Error rate =
$$\frac{FP + FN}{TP + TN + FP + FN}$$

Limiti dell'accuratezza

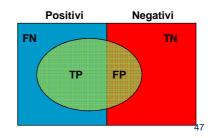
- L'acuratezza non è una metrica adeguata nel caso in cui le classi contengano un numero fortemente diverso di record
 - ✓ Consideriamo un problema di classificazione binario in cui
 - # record della classe 0 = 9990
 - # record della classe 1 = 10
 - ✓ Un modello che che predica sempre l'appartennza alla classe 0 avrà un'accuratezza di 9990/10000 = 99.9 %
- Nel caso di problemi di classificazione binaria la classe la classe "rara" è anche chiamata classe positiva, mentre la classe che include la maggioranza dei record è chiamata classe negativa

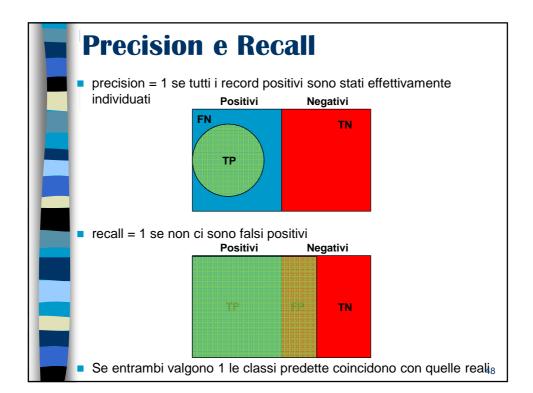
Precision e Recall

- Precision e Recall sono due metriche utilizzate nelle applicazioni in cui la corretta classificazione dei record della classe positiva riveste una maggiore importanza
 - ✓ Precision misura la frazione di record risultati effettivamente positivi tra tutti quelli che erano stati classificati come tali
 - √ Valori elevati indicano che pochi record della classe negativa sono stati erroneamente classificati come positivi.
 - ✓ Recall misura la frazione di record positivi correttamente classificati
 - ✓ Valori elevati indicano che pochi record della classe positiva sono stati erroneamente classificati come negativi.

Precision,
$$p = \frac{TP}{TP + FP}$$

Recall, $r = \frac{TP}{TP + FN}$





F-measure

 Una metrica che riassume precision e recall è denominata F-measure

F-measure,
$$F = \frac{2rp}{r+p} = \frac{2 \times TP}{2 \times TP + FP + FN}$$

- F-measure rappresenta la media armonica tra precision e recall
 - ✓ La media armonica tra due numeri x e y tende a essere vicina al più piccolo dei due numeri. Quindi se la media armonica è elevata significa che sia precision, sia recall lo sono.
 - ✓ ... e quindi non si sono verificati nè falsi negativi nè falsi
 positivi

49

Matrice dei costi

- La matrice dei costi codifica la penalità in cui si incorre nel classificare un record in una classe diversa
 - ✓ Una penalità negativa indica il "premio" che si ottiene per una corretta classificazione

C(M)=TPxC(Yes|Yes)+FPxC(Yes|No) +FNxC(No|Yes) +TNxC(No|No)

	Cla	asse previst	ta j
	C(i j)	Class=Yes	Class=No
Classe effettiva	Class=Yes	C(Yes Yes)	C(Yes No)
i	Class=No	C(No Yes)	C(No No)

Un modello costruito struttando, come funzione di purezza, una matrice di costo tenderà a fornire un modello a costo minimo rispetto ai pesi specificati

Cost Matrix	PREDICTED CLASS			
	C(i j)	+	-	
ACTUAL CLASS	+	-1	100	
	-	1	0	

Model M ₁	PREDICTED CLASS				
		+	-		
ACTUAL CLASS	+	150	40		
	-	60	250		

Accuracy = 80%
Cost = 3910

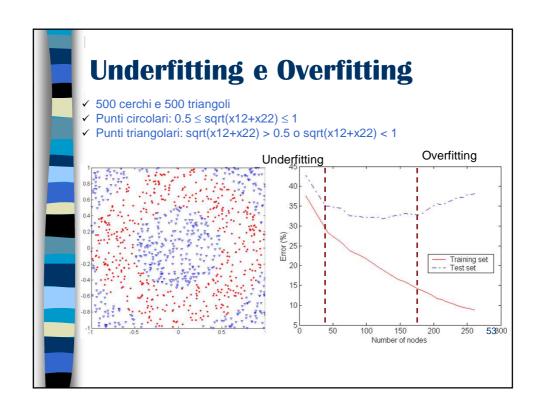
Model M ₂	PREDICTED CLASS			
		+	-	
ACTUAL CLASS	+	250	45	
	-	5	200	

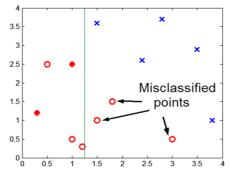
Accuracy = 90%Cost = 4255

51

Errori di classificazione

- Training error: sono gli errori che si commettono sul training set
- Generalization error: sono gli errori che si commettono sul test set (record su cui non è stato addestrato il sistema).
- Underfitting: il modello è troppo semplice e non consente una buona classificazione nè del training set, nè del test set
 - Overfitting: il modello è troppo complesso, consente un'ottima classificazione del training set, ma una pessima classificazione del test set
 - ✓ Il modello non riesce a generalizzare poiché è basato su peculiarità specifiche del training set che non si ritrovano nel test set (es. rumore presente nel training set)





Punti presenti nel training set **x** •

La mancanza dei punti nella parte bassa del diagramma rende difficile individuare una corretta classificazione per quella porzione di regione

55

Come gestire l'Overfitting: prepruing (Early stopping rule)

- Interrompere lo splitting prima che si arrivi a un albero di massima profondità
- Un nodo non può essere splittato ulteriormente se:
 - ✓ II nodo non contiene istanze
 - ✓ Tutte le istanze appartengono alla medesima classe
 - ✓ Tutti gli attributi hanno gli stessi valori
- Condizioni più restrittive potenzialmente adottabili sono:
 - ✓ Interrompi lo splitting se il numero di istanze nel nodo è inferiore a una quantità fissata
 - ✓ Interrompi lo splitting se la distribuzione delle istanze tra le classi è indipendente dai valori degli attributi
 - ✓ Interrompi lo splitting se non si migliora la misura di purezza (es. Gini o information gain).

Come gestire l'Overfitting: postpruning (reduced error pruning)

- Esegui tutti gli split possibili
- Esamina i nodi del decision tree ottenuto con una logica bottom-up
- Collassa un sottoalbero in un nodo foglia se questo permette di ridurre l'errore di generalizzazione (ossia sul validation set)
 - ✓ Scegli di collassare il sottoalbero che determina la massima riduzione di errore (N.B. scelta greedy)
- Le istanze nella nuova foglia possono essere etichettate
 - ✓ In base all'etichetta che compare più frequentemente nel sottoalbero
 - ✓ In base all'etichetta che comapre più frequentemente nelle istanze del training set che appartengono al sottoalbero
- Il post-pruning è più efficace ma implica un maggior costo computazionale
 - ✓ Si basa sull'evidenza del risultato di un albero completo

57

Note sull'overfitting

- L'overfitting determina alberi decisionali più complessi del necessario
- L'errore di classificazione compiuto sul training set non fornisce stime accurate circa il comportamento dell'albero su record sconosciuti
- Richiede nuove tecniche per stimare gli errori di generalizzazione

Stimare gli errori di generalizzazione

- Un albero di classificazione dovrebbe minimizzare l'errore sul data set reale, purtroppo in fase di costruzione si ha a disposizione solo il training set. Quindi l'errore sul data set reale deve essere stimato.
 - ✓ Re-substitution error: numero degli errori commessi sul training set (∑ e(t))
 - Generalization error: numero degli errori commessi sul data set reale (Σ e'(t))
- I metodi per stimare l'errore di generalizzazione sono:
 - ✓ Approccio ottimistico: e'(t) = e(t)
 - ✓ Approccio pessimistico
 - ✓ Minimum Description Length (MDL)
 - ✓ Utilizzo del test set: l'errore di generalizzazione è pari all'errore commesso sul test set.
 - Normalmente il test set è ottenuto estraendo dall'iniziale training set 1/3 dei record
 - Offre buoni risultati ma il rischio è quello di operare con un training set troppo piccolo

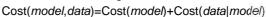
59

Occam's Razor

- Dati due modelli con errori di generalizzazioni similari è preferibile quello più semplice
 - ✓ Per modelli complessi c'è maggiore probabilità che il livello di errore sia determinato da condizioni accidentali sui dati
- E' quindi utile considerare la complessità del modello quando si valuta la bontà di un albero decisionale
- Nota: principio metodologico espresso nel XIV secolo dal filoso e frate francescano inglese William of Ockham

Minimum Description Length

- Dati due modelli si sceglie quello che minimizza il costo per descrivere una classificazione
 - ✓ Per descrivere il modello posso:
 - A) Inviare sequenzialmente le label di classe O(n)
 - B) Costruire un classificatore, e inviarne la descrizione assieme a una puntuale descrizione degli errori che esso commette



Х	у
X1	1
X2	0
Х3	1
Xn	0

Х	у
X1	?
X2	?
Х3	?
Xn	?

61

MDM: un esempio

 Dataset con n record descritti da16 attributi binari e 3 valori di classe

Tree1 7 errori

Tree2 4 errori

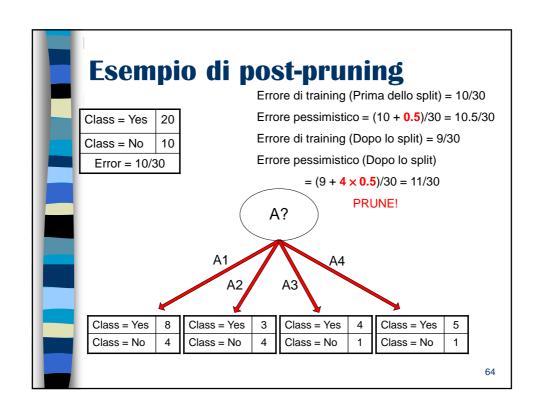
- ✓ Ogni nodo interno è modellato con l'ID dell'attributo usato → log2(16)=4 bit
- ✓ Ogni foglia è modellata con l'ID della classe → log2(3)=2 bit
- ✓ Ogni errore è modellato con la sua posizione nel training set considerando n record→ log2(n)

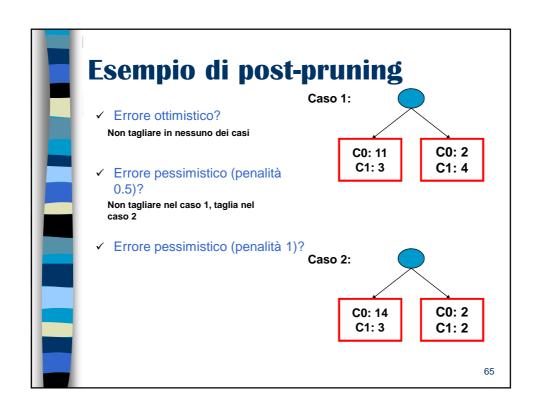
Cost(Tree1)= $4 \times 2 + 2 \times 3 + 7 \times \log_2(n) = 14 + 7 \times \log_2(n)$ Cost(Tree2)= $4 \times 4 + 2 \times 5 + 4 \times \log_2(n) = 26 + 4 \times \log_2(n)$ Cost(Tree1) < Cost(Tree2) se n < 16

- Stima l'errore di generalizzazione sommando all'errore sul training set una penalizzazione legata alla complessità del modello
 - $e(t_i)$: errori di classificazione commessi nella foglia i
 - $\Omega(t_i)$: penalità associata alla foglia i
 - n(t) numero di record del training set appartenenti alla foglia i

$$E(T) = \frac{\sum_{i=1}^{k} e(t_i) + \Omega(t_i)}{\sum_{i=1}^{k} n(t_i)}$$

 Per alberi binari una penalità pari a 0.5 implica che un nodo debba sempre essere espanso nei due nodi figli se migliora la classificazione di almeno un record





Elementi caratterizzanti

- A parte la logica di base per definire completamente un algoritmo per la costruzione di alberi decisionali è necesario definire:
 - ✓ La condizione di split
 - ✓ Il criterio che definisce lo split migliore
 - ✓ Il criterio per interrompere lo splitting
 - ✓ Le modalità per valutare la bontà di un albero decisionale

Costruzione del test set

- Holdout
 - ✓ Utilizzare 2/3 dei record per il training e 1/3 per la validazione
 - Svantaggi:
 - Opera con un training set ridotto
 - Il risultato dipende dalla composizione del training set e del test set
- Random subsampling
 - Consiste in una esecuzione ripetuta del metodo holdout in cui il dataset di training è scelto casualmente
- Cross validation
 - ✓ Partiziona i record in k sotto-insiemi distinti
 - ✓ Esegui il training su k-1 partizioni ed il test sulla rimanente
 - ✓ Ripeti il test k volte e calcola l'accuracy media
 - ATTENZIONE: la cross validation crea k classificatori diversi e quindi la validazione indica quanto il tipo di classificatore e i suoi parametri sono adatti per lo specifico problema
 - I k alberi decisionali costruiti potrebbero avere attributi e condizioni di split diverse a seconda delle caratterisitche del k-esimo training set
- Bootstrap...

67

Bootstrap

- Differentemente dagli altri approcci prevede il reimbussolamento dei record già selezionati
- Se il dataset iniziale è composto da N record è possibile creare un training set di N record in cui ogni record ha circa il 63.2% di probabilità di comparire (con N sufficientemente grande)

$$1 - (1 - 1/N)^{N} = 1 - e^{-1} = 0.632$$

- I record non utilizzati nemmeno una volta nel training set corrente compongono il validation set
- Si ripete quindi la procedura b volte. Comunemente l'accuracy media del modello è calcolata come:

$$Acc_{boot} = \frac{1}{b} \sum_{i=1}^{b} 0.632 \times Acc_i + 0.368 \times Acc_s$$
 dove Acc_i è l'accuracy del bootstrap i-esimo, mentre Acc_s è l'accuracy del

dataset completo

Il bootstrap non crea un (nuovo) dataset con più informazioni, ma permette di stabilizzare i risultati ottenibili del dataset a dispozione. E' quindi utilie soprattuto nel caso di dataset di piccole dimensioni.

C4.5

- Algoritmo per la costruzione di alberi decisionale
 - ✓ Estende l'algoritmo ID3 e Hunt
 - ✓ Una sua versione denominata J48 è implementata in WEKA
- Caratteristiche:
 - ✓ Utilizza il GainRatio come criterio per determinare l'attributo di split
 - ✓ Gestisce gli attributi continui determinando uno split point che divide in due l'intervallo dei valori
 - Gestisce dati con valori mancanti. Gli attributi mancanti non sono considerati per calcolare il GainRatio.
 - ✓ Può gestire attributi a cui sono associati pesi diversi
 - ✓ Esegue postPruning dell'albero creato
- La costruzione dell'albero si interrompe quando:
 - ✓ Il nodo contiene record appartenenti a una sola classe
 - ✓ Nessun attributo permette di determinare un GainRatio positivo
 - ✓ Il nodo non contiene record

69

Esercizio

- Utilizzando l'errore di classificazione come misura, identificare quale attributo deve essere scelto per primo e quale per secondo
 - ✓ Calcolare le matrici di contingenza
 - ✓ Calcolare l'information gain

Α	В	С	# istanze	
			+	-
Т	Т	Т	5	0
F	Т	Т	0	20
Т	F	Т	20	0
F	F	T	0	5
Т	Т	F	0	0
F	Т	F	25	0
Т	F	F	0	0
F	F	F	0	25

 Come cambiano i risultati se si utilizza come attributo di split quello peggiore? Commentare il risultato

